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The theory of almost periodic functions was established by H. Bohr.

Almost periodic functions are a natural extension of periodic functions.

One of important results in Bohr’s theory is that the class of almost

periodic functions ϕ is identical with the closure of the linear span of

{eiλt}λ∈Λ in the sense of the L∞ norm, where Λ is a countable set in R

defined as a support of a certain transform of ϕ.

One of interesting examples of almost periodic functions comes from the

Riemann zeta-function ζ(s), where s is a complex variable with s = σ+it.

Let ζσ(t) be the function defined by ζσ(t) = ζ(σ + it). Then, for σ > 1,

ζσ(t) is an almost periodic function with Λ = {− log n}∞n=1.

A. Beurling studied almost periodic functions ϕ from a point of view of

spectral sets S(ϕ). The concept of spectral sets is defined as a support of a

certain transform of ϕ which is a generalization of the Fourier transform.

Beurling’s result is this: Let ϕ be a uniformly continuous and bounded

function on R. If S(ϕ) is a countable set which does not accumulate to

a finite value, then ϕ is in the L∞ norm closure of the linear span of

{eiλt}λ∈S(ϕ), and consequently, an almost periodic function.

It is a natural motivation to extend Beurling’s result to ones for un-

bounded functions. This is a difficult problem and should be tried. The

present talk is concerned with this motivation from a point of view of the

Riemann zeta-function. For σ < 1 it is known that ζσ is unbounded, and

so, it is no longer an almost periodic function in the sense of Bohr. So, we

firstly study its spetral set S(ζσ) for σ < 1. A result is that S(ζσ) = R for

σ with σ < 1. The result S(ζσ) = R might suggest that S(ζσ) is consisted

of the discrete spectrum {− log n}∞n=1 and the continuous spectrum R in

a sense.

Apart from ζσ, we discuss spectral sets of functions which are expressed

by Dirichlet series on a half plane. For example, we see that S(ζk
σ) = R

for σ with σ < 1, where k ∈ N, and S(Lσ) = {− log n|n ∈ N, (n, q) = 1}
for σ with σ ≤ 1, where Lσ(t) is the function defined by using Dirichlet

L-function L(s, χ) with a primitive character χ mod q.


