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Multiple zeta values ζ(k) and ζ∗(k), which are two of various natural gener-
alizations of Riemann zeta values, are defined as follows. For any multiple index
k = (k1, k2, . . . , kn) (ki ∈ Z, ki > 0), the weight and height of k are by definition
the integers k = k1 + k2 + · · · + kn and s = #{i| ki > 1}, respectively. Index
k = (k1, k2, . . . , kn) is said to be admissible if its first entry satisfies the extra re-
quirement k1 ≥ 2. For each admissible multiple index k, we define two kinds of
multiple zeta values by
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Multiple zeta values normally mean ζ(k) in literatures, and Euler was interested in
ζ∗(k). In this talk, three families of relations between sums of multiple zeta values
ζ∗ and Riemann zeta values are planning to be given. One of them is as follows.

Theorem (with Takashi Aoki) Let k and s be integers such that k/2 ≥ s ≥ 1. Let
I0(k, s) denote the set of all admissible multiple indices of weight k and height s.
Then we have
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(1 − 21−k)ζ(k).

Farthermore, a proof of certain kind of formula of Bernoulli numbers is given as
a consequence of their theorems.


